
Embedding Database System 
Logic in the Operating System Is 

Finally a Good Idea
Matthew Butrovich

Matt Butrovich © November 2023 1

PARALLEL DATA LABORATORY
Carnegie Mellon University



Outline
• User-bypass

• Prior work: User-bypass for DBMS proxies

• Future work: User-bypass DBMS

Matt Butrovich © November 2023http://www.pdl.cmu.edu/ 2



The OS Is Not Our Friend

Matt Butrovich © November 20233

“The bottom line is that 
operating system services 
in many existing systems 

are either too slow or 
inappropriate.”

http://www.pdl.cmu.edu/



The OS Is Not Our Friend

Matt Butrovich © November 20233

“The bottom line is that 
operating system services 
in many existing systems 

are either too slow or 
inappropriate.”

Michael Stonebraker. Operating System Support for 
Database Management. Commun. ACM. 1981.

http://www.pdl.cmu.edu/



The OS Is Not Our Friend

Matt Butrovich © November 20233

“The bottom line is that 
operating system services 
in many existing systems 

are either too slow or 
inappropriate.”

Michael Stonebraker. Operating System Support for 
Database Management. Commun. ACM. 1981.

http://www.pdl.cmu.edu/



Where Are the I/O Bottlenecks?

• I/O devices (network, disk) are faster

• Operating system logic is also faster

• Max throughput: 42Gbps per CPU core
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• Reimplement protocols in user-
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• Difficult to debug, deploy, and 
maintain

• Difficult to optimize
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• Lack of standard API

• Stability and security issues

• Lack of OS adoption
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• # instructions, 
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eBPF Environment
• Attach to user-space or kernel-space hooks

• User-space ⇒ “new system call”
• Kernel-space ⇒ observe/modify OS logic

• Ephemeral program execution

• eBPF maps: kernel-resident data structures
• Key-value interface
• Hash tables, stacks/queues, arrays, etc.
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• Traffic goes through OS network
stack to apply DBMS protocol logic

• User-space applications of varying
complexity to express parallelism

• Coordination mechanisms around
send() and recv() system calls
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Outline
• User-bypass

• Prior work: User-bypass for DBMS proxies

• Future work: User-bypass DBMS
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Storage Management
• Goal: Store database contents in kernel-resident 

data structures

• Challenges:
• No malloc
• eBPF maps use fixed size keys and values
• Version chains cannot be unbounded
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Transaction Management
• Goal: Multi-statement transactions that ensure 

ACID properties
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• Restrictive atomic primitives
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• eBPF execution cannot yield
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Logging and Checkpointing
• Goal: Persist database contents to disk both 

through write-ahead logging and checkpointing

• Challenges:
• eBPF programs cannot initiate disk access
• eBPF program execution cannot yield
• Database contents are stored in kernel-resident data
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Experimental Setup
• v0.1 user-bypass DBMS (BPF-DB):

• In-memory storage manager, variable value sizes
• No multi-statement transactions
• Atomic GET/SET/DELETE via spinlocks, ordering, and RCU “MVCC”

• In-memory databases:
• Redis (C, single-threaded)
• KeyDB (C, multi-threaded)
• Dragonfly (C++, multi-threaded)
• BPF-DB (eBPF, multi-threaded)

• 2×20-core Intel Xeon Gold 5218R CPUs, 196 GB DRAM, 
memtier_benchmark, Ubuntu 22.04 LTS
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Conclusion
• User-bypass is an approach for designing systems that 

reduces execution overhead and data movement 
associated with OS system calls

• User-bypass is already feasible for multiple applications 
including DBMS proxies

• Our proposed user-bypass DBMS will benefit from 
storing database contents in kernel-resident data 
structures and enable new classes of eBPF applications
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