
Embedding Database System 
Logic in the Operating System Is 

Finally a Good Idea
Matthew Butrovich

Matt Butrovich © November 2023 1

PARALLEL DATA LABORATORY
Carnegie Mellon University



Outline
• User-bypass

• Prior work: User-bypass for DBMS proxies

• Future work: User-bypass DBMS

Matt Butrovich © November 2023http://www.pdl.cmu.edu/ 2



The OS Is Not Our Friend

Matt Butrovich © November 20233

“The bottom line is that 
operating system services 
in many existing systems 

are either too slow or 
inappropriate.”

http://www.pdl.cmu.edu/



The OS Is Not Our Friend

Matt Butrovich © November 20233

“The bottom line is that 
operating system services 
in many existing systems 

are either too slow or 
inappropriate.”

Michael Stonebraker. Operating System Support for 
Database Management. Commun. ACM. 1981.

http://www.pdl.cmu.edu/



The OS Is Not Our Friend

Matt Butrovich © November 20233

“The bottom line is that 
operating system services 
in many existing systems 

are either too slow or 
inappropriate.”

Michael Stonebraker. Operating System Support for 
Database Management. Commun. ACM. 1981.

http://www.pdl.cmu.edu/



Where Are the I/O Bottlenecks?

• I/O devices (network, disk) are faster

• Operating system logic is also faster

• Max throughput: 42Gbps per CPU core

Matt Butrovich © November 20234http://www.pdl.cmu.edu/

N
et

w
or

k
U

se
r-

sp
ac

e
Ke

rn
el

-s
pa

ce
TCP Stack

Socket Stack

send()/recv()

Client

DBMS

User-space DBMS



Where Are the I/O Bottlenecks?

• I/O devices (network, disk) are faster

• Operating system logic is also faster

• Max throughput: 42Gbps per CPU core

N
et

w
or

k
U

se
r-

sp
ac

e
Ke

rn
el

-s
pa

ce

TCP Stack

Socket Stack

send()/recv()

DBMS

Client

Matt Butrovich © November 20234

User-space DBMS

http://www.pdl.cmu.edu/



Where Are the I/O Bottlenecks?

• I/O devices (network, disk) are faster

• Operating system logic is also faster

• Max throughput: 42Gbps per CPU core

N
et

w
or

k
U

se
r-

sp
ac

e
Ke

rn
el

-s
pa

ce

TCP Stack

Socket Stack

send()/recv()

DBMS

Client

Matt Butrovich © November 20234

User-space DBMS

http://www.pdl.cmu.edu/



Where Are the I/O Bottlenecks?

• I/O devices (network, disk) are faster

• Operating system logic is also faster

• Max throughput: 42Gbps per CPU core

N
et

w
or

k
U

se
r-

sp
ac

e
Ke

rn
el

-s
pa

ce

TCP Stack

Socket Stack

send()/recv()

DBMS

Client

Matt Butrovich © November 20234

User-space DBMS

http://www.pdl.cmu.edu/



Where Are the I/O Bottlenecks?

• I/O devices (network, disk) are faster

• Operating system logic is also faster

• Max throughput: 42Gbps per CPU core

N
et

w
or

k
U

se
r-

sp
ac

e
Ke

rn
el

-s
pa

ce

TCP Stack

Socket Stack

send()/recv()

DBMS

Client

Matt Butrovich © November 20234

Qizhe Cai et al. Understanding host network stack 
overheads. SIGCOMM. 2021.

User-space DBMS

http://www.pdl.cmu.edu/



Where Are the I/O Bottlenecks?

• I/O devices (network, disk) are faster

• Operating system logic is also faster

• Max throughput: 42Gbps per CPU core

N
et

w
or

k
U

se
r-

sp
ac

e
Ke

rn
el

-s
pa

ce

TCP Stack

Socket Stack

send()/recv()

DBMS

Client

Matt Butrovich © November 20234

Qizhe Cai et al. Understanding host network stack 
overheads. SIGCOMM. 2021.

User-space DBMS

>50% of CPU cycles
on memcpy()

http://www.pdl.cmu.edu/



Kernel-Bypass

• Reimplement protocols in user-
space

• Difficult to debug, deploy, and 
maintain

• Difficult to optimize

Matt Butrovich © November 20235

N
et

w
or

k
U

se
r-

sp
ac

e
Ke

rn
el

-s
pa

ce
TCP Stack

Socket Stack

send()/recv()

Client

DBMS

User-space DBMS

http://www.pdl.cmu.edu/



Kernel-Bypass

• Reimplement protocols in user-
space

• Difficult to debug, deploy, and 
maintain

• Difficult to optimize

Matt Butrovich © November 20235

N
et

w
or

k
U

se
r-

sp
ac

e
Ke

rn
el

-s
pa

ce
TCP Stack

Socket Stack

send()/recv()

Client

DBMS

User-space DBMS

SPDK

DPDK

http://www.pdl.cmu.edu/



Kernel-Bypass

• Reimplement protocols in user-
space

• Difficult to debug, deploy, and 
maintain

• Difficult to optimize

Matt Butrovich © November 20235

N
et

w
or

k
U

se
r-

sp
ac

e
Kernel-space

TCP Stack

Socket Stack

send()/recv()

Client

DBMS

Kernel-bypass DBMS

SPDK

DPDK

http://www.pdl.cmu.edu/



Kernel-Bypass

• Reimplement protocols in user-
space

• Difficult to debug, deploy, and 
maintain

• Difficult to optimize N
et

w
or

k
U

se
r-

sp
ac

e

Kernel-space send()/recv()

Socket Stack

TCP Stack

DBMS

Client

Matt Butrovich © November 20235

Kernel-bypass DBMS

http://www.pdl.cmu.edu/



Kernel-Bypass

• Reimplement protocols in user-
space

• Difficult to debug, deploy, and 
maintain

• Difficult to optimize N
et

w
or

k
U

se
r-

sp
ac

e

Kernel-space send()/recv()

Socket Stack

TCP Stack

DBMS

Client

Matt Butrovich © November 20235

Kernel-bypass DBMS

http://www.pdl.cmu.edu/



Kernel-Bypass

• Reimplement protocols in user-
space

• Difficult to debug, deploy, and 
maintain

• Difficult to optimize N
et

w
or

k
U

se
r-

sp
ac

e

Kernel-space send()/recv()

Socket Stack

TCP Stack

DBMS

Client

Matt Butrovich © November 20235

William Tu et al. Revisiting the openvSwitch Dataplane Ten 
Years Later. SIGCOMM. 2021.

Kernel-bypass DBMS

http://www.pdl.cmu.edu/



Kernel-Bypass

• Reimplement protocols in user-
space

• Difficult to debug, deploy, and 
maintain

• Difficult to optimize N
et

w
or

k
U

se
r-

sp
ac

e

Kernel-space send()/recv()

Socket Stack

TCP Stack

DBMS

Client

Matt Butrovich © November 20235

William Tu et al. Revisiting the openvSwitch Dataplane Ten 
Years Later. SIGCOMM. 2021.
https://github.com/xrp-project/BPF-KV/issues/3

Kernel-bypass DBMS

http://www.pdl.cmu.edu/



Kernel-Bypass

• Reimplement protocols in user-
space

• Difficult to debug, deploy, and 
maintain

• Difficult to optimize N
et

w
or

k
U

se
r-

sp
ac

e

Kernel-space send()/recv()

Socket Stack

TCP Stack

DBMS

Client

Matt Butrovich © November 20235

William Tu et al. Revisiting the openvSwitch Dataplane Ten 
Years Later. SIGCOMM. 2021.
https://github.com/xrp-project/BPF-KV/issues/3

Kernel-bypass DBMS
X

http://www.pdl.cmu.edu/



User-Bypass

Matt Butrovich © November 20236

N
et

w
or

k
U

se
r-

sp
ac

e
Ke

rn
el

-s
pa

ce
TCP Stack

Socket Stack

send()/recv()

Client

DBMS

User-space DBMS

http://www.pdl.cmu.edu/

• Don’t pull DBMS data to user-space,
push DBMS logic to kernel-space

• Avoid copying buffers, scheduling user 
threads, and system call overhead



User-Bypass

Matt Butrovich © November 20236

User-bypass DBMS

N
et

w
or

k
U

se
r-

sp
ac

e
Ke

rn
el

-s
pa

ce
TCP Stack

Socket Stack

send()/recv()

Client

DBMS

DBMS

http://www.pdl.cmu.edu/

• Don’t pull DBMS data to user-space,
push DBMS logic to kernel-space

• Avoid copying buffers, scheduling user 
threads, and system call overhead



User-Bypass

N
et

w
or

k
U

se
r-

sp
ac

e
Ke

rn
el

-s
pa

ce

TCP Stack

Socket Stack

send()/recv()

DBMS

Client

DBMS

Matt Butrovich © November 20236

User-bypass DBMS

http://www.pdl.cmu.edu/

• Don’t pull DBMS data to user-space,
push DBMS logic to kernel-space

• Avoid copying buffers, scheduling user 
threads, and system call overhead



User-Bypass

N
et

w
or

k
U

se
r-

sp
ac

e
Ke

rn
el

-s
pa

ce

TCP Stack

Socket Stack

send()/recv()

DBMS

Client

DBMS

Matt Butrovich © November 20236

User-bypass DBMS

http://www.pdl.cmu.edu/

• Don’t pull DBMS data to user-space,
push DBMS logic to kernel-space

• Avoid copying buffers, scheduling user 
threads, and system call overhead



User-Bypass

N
et

w
or

k
U

se
r-

sp
ac

e
Ke

rn
el

-s
pa

ce

TCP Stack

Socket Stack

send()/recv()

DBMS

Client

DBMS

Matt Butrovich © November 20236

User-bypass DBMS

http://www.pdl.cmu.edu/

• Don’t pull DBMS data to user-space,
push DBMS logic to kernel-space

• Avoid copying buffers, scheduling user 
threads, and system call overhead



User-Bypass

N
et

w
or

k
U

se
r-

sp
ac

e
Ke

rn
el

-s
pa

ce

TCP Stack

Socket Stack

send()/recv()

DBMS

Client

DBMS

Matt Butrovich © November 20236

User-bypass DBMS

Brian N. Bershad et al. Extensibility, Safety and 
Performance in the SPIN Operating System. SOSP. 1995.

Margo I. Seltzer et al. Dealing with Disaster: Surviving 
Misbehaved Kernel Extensions. OSDI. 1996.

Greg Ganger et al. Fast and flexible application-level 
networking on exokernel systems. ACM Trans. Comput. 
Syst. 2002.

http://www.pdl.cmu.edu/

• Don’t pull DBMS data to user-space,
push DBMS logic to kernel-space

• Avoid copying buffers, scheduling user 
threads, and system call overhead



Applying User-Bypass

• Lack of standard API

• Stability and security issues

• Lack of OS adoption

N
et

w
or

k
U

se
r-

sp
ac

e
Ke

rn
el

-s
pa

ce

TCP Stack

Socket Stack

send()/recv()

DBMS

Client

DBMS

Matt Butrovich © November 20237

User-bypass DBMS

Brian N. Bershad et al. Extensibility, Safety and 
Performance in the SPIN Operating System. SOSP. 1995.

Margo I. Seltzer et al. Dealing with Disaster: Surviving 
Misbehaved Kernel Extensions. OSDI. 1996.

Greg Ganger et al. Fast and flexible application-level 
networking on exokernel systems. ACM Trans. Comput. 
Syst. 2002.

http://www.pdl.cmu.edu/



Applying User-Bypass

• Lack of standard API

• Stability and security issues

• Lack of OS adoption

N
et

w
or

k
U

se
r-

sp
ac

e
Ke

rn
el

-s
pa

ce

TCP Stack

Socket Stack

send()/recv()

DBMS

Client

DBMS

Matt Butrovich © November 20237

User-bypass DBMS

Brian N. Bershad et al. Extensibility, Safety and 
Performance in the SPIN Operating System. SOSP. 1995.

Margo I. Seltzer et al. Dealing with Disaster: Surviving 
Misbehaved Kernel Extensions. OSDI. 1996.

Greg Ganger et al. Fast and flexible application-level 
networking on exokernel systems. ACM Trans. Comput. 
Syst. 2002.

http://www.pdl.cmu.edu/



Applying User-Bypass

• Lack of standard API

• Stability and security issues

• Lack of OS adoption

N
et

w
or

k
U

se
r-

sp
ac

e
Ke

rn
el

-s
pa

ce

TCP Stack

Socket Stack

send()/recv()

DBMS

Client

DBMS

Matt Butrovich © November 20237

User-bypass DBMS

Brian N. Bershad et al. Extensibility, Safety and 
Performance in the SPIN Operating System. SOSP. 1995.

Margo I. Seltzer et al. Dealing with Disaster: Surviving 
Misbehaved Kernel Extensions. OSDI. 1996.

Greg Ganger et al. Fast and flexible application-level 
networking on exokernel systems. ACM Trans. Comput. 
Syst. 2002.

http://www.pdl.cmu.edu/



Applying User-Bypass

• Lack of standard API

• Stability and security issues

• Lack of OS adoption

N
et

w
or

k
U

se
r-

sp
ac

e
Ke

rn
el

-s
pa

ce

TCP Stack

Socket Stack

send()/recv()

DBMS

Client

DBMS

Matt Butrovich © November 20237

User-bypass DBMS

Brian N. Bershad et al. Extensibility, Safety and 
Performance in the SPIN Operating System. SOSP. 1995.

Margo I. Seltzer et al. Dealing with Disaster: Surviving 
Misbehaved Kernel Extensions. OSDI. 1996.

Greg Ganger et al. Fast and flexible application-level 
networking on exokernel systems. ACM Trans. Comput. 
Syst. 2002.

http://www.pdl.cmu.edu/



extended Berkeley Packet Filter

• Safe, event-driven programs 
in kernel-space

• Write in C and compile to 
eBPF

• Verifier constraints:
• # instructions, 

boundedness, memory 
safety, limited API

Matt Butrovich © November 20238http://www.pdl.cmu.edu/



extended Berkeley Packet Filter

• Safe, event-driven programs 
in kernel-space

• Write in C and compile to 
eBPF

• Verifier constraints:
• # instructions, 

boundedness, memory 
safety, limited API

Matt Butrovich © November 20238http://www.pdl.cmu.edu/



extended Berkeley Packet Filter

• Safe, event-driven programs 
in kernel-space

• Write in C and compile to 
eBPF

• Verifier constraints:
• # instructions, 

boundedness, memory 
safety, limited API

U
se

r-
sp

ac
e

Ke
rn

el
-s

pa
ce

eBPF
Source Code

eBPF
Bytecode

eBPF
Binary

eBPF
Verifier

eBPF
Compiler

JIT
Compiler

Load

Matt Butrovich © November 20238http://www.pdl.cmu.edu/



extended Berkeley Packet Filter

• Safe, event-driven programs 
in kernel-space

• Write in C and compile to 
eBPF

• Verifier constraints:
• # instructions, 

boundedness, memory 
safety, limited API

U
se

r-
sp

ac
e

Ke
rn

el
-s

pa
ce

eBPF
Source Code

eBPF
Bytecode

eBPF
Binary

eBPF
Verifier

eBPF
Compiler

JIT
Compiler

Load

Matt Butrovich © November 20238http://www.pdl.cmu.edu/



extended Berkeley Packet Filter

• Safe, event-driven programs 
in kernel-space

• Write in C and compile to 
eBPF

• Verifier constraints:
• # instructions, 

boundedness, memory 
safety, limited API

U
se

r-
sp

ac
e

Ke
rn

el
-s

pa
ce

eBPF
Source Code

eBPF
Bytecode

eBPF
Binary

eBPF
Verifier

eBPF
Compiler

JIT
Compiler

Load

Matt Butrovich © November 20238http://www.pdl.cmu.edu/



extended Berkeley Packet Filter

• Safe, event-driven programs 
in kernel-space

• Write in C and compile to 
eBPF

• Verifier constraints:
• # instructions, 

boundedness, memory 
safety, limited API

U
se

r-
sp

ac
e

Ke
rn

el
-s

pa
ce

eBPF
Source Code

eBPF
Bytecode

eBPF
Binary

eBPF
Verifier

eBPF
Compiler

JIT
Compiler

Load

Matt Butrovich © November 20238http://www.pdl.cmu.edu/



eBPF Environment
• Attach to user-space or kernel-space hooks

• User-space ⇒ “new system call”
• Kernel-space ⇒ observe/modify OS logic

• Ephemeral program execution

• eBPF maps: kernel-resident data structures
• Key-value interface
• Hash tables, stacks/queues, arrays, etc.

Matt Butrovich © November 2023http://www.pdl.cmu.edu/ 9



eBPF Environment
• Attach to user-space or kernel-space hooks

• User-space ⇒ “new system call”
• Kernel-space ⇒ observe/modify OS logic

• Ephemeral program execution

• eBPF maps: kernel-resident data structures
• Key-value interface
• Hash tables, stacks/queues, arrays, etc.

Matt Butrovich © November 2023http://www.pdl.cmu.edu/ 9



eBPF Environment
• Attach to user-space or kernel-space hooks

• User-space ⇒ “new system call”
• Kernel-space ⇒ observe/modify OS logic

• Ephemeral program execution

• eBPF maps: kernel-resident data structures
• Key-value interface
• Hash tables, stacks/queues, arrays, etc.

Matt Butrovich © November 2023http://www.pdl.cmu.edu/ 9



eBPF Environment
• Attach to user-space or kernel-space hooks

• User-space ⇒ “new system call”
• Kernel-space ⇒ observe/modify OS logic

• Ephemeral program execution

• eBPF maps: kernel-resident data structures
• Key-value interface
• Hash tables, stacks/queues, arrays, etc.

Matt Butrovich © November 2023http://www.pdl.cmu.edu/ 9



eBPF Environment
• Attach to user-space or kernel-space hooks

• User-space ⇒ “new system call”
• Kernel-space ⇒ observe/modify OS logic

• Ephemeral program execution

• eBPF maps: kernel-resident data structures
• Key-value interface
• Hash tables, stacks/queues, arrays, etc.

Matt Butrovich © November 2023http://www.pdl.cmu.edu/ 9



eBPF Environment
• Attach to user-space or kernel-space hooks

• User-space ⇒ “new system call”
• Kernel-space ⇒ observe/modify OS logic

• Ephemeral program execution

• eBPF maps: kernel-resident data structures
• Key-value interface
• Hash tables, stacks/queues, arrays, etc.

Matt Butrovich © November 2023http://www.pdl.cmu.edu/ 9



eBPF Environment
• Attach to user-space or kernel-space hooks

• User-space ⇒ “new system call”
• Kernel-space ⇒ observe/modify OS logic

• Ephemeral program execution

• eBPF maps: kernel-resident data structures
• Key-value interface
• Hash tables, stacks/queues, arrays, etc.

Matt Butrovich © November 2023http://www.pdl.cmu.edu/ 9



eBPF Environment
• Attach to user-space or kernel-space hooks

• User-space ⇒ “new system call”
• Kernel-space ⇒ observe/modify OS logic

• Ephemeral program execution

• eBPF maps: kernel-resident data structures
• Key-value interface
• Hash tables, stacks/queues, arrays, etc.

Matt Butrovich © November 2023http://www.pdl.cmu.edu/ 9



Outline
• User-bypass

• Prior work: User-bypass for DBMS proxies

• Future work: User-bypass DBMS

Matt Butrovich © November 202310http://www.pdl.cmu.edu/

Butrovich et al. Tigger: A Database Proxy That Bounces 
With User-Bypass. VLDB. 2023.



Connection Pooling with DBMS Proxies

Matt Butrovich © November 202311http://www.pdl.cmu.edu/

C
C

C

BB B

Clients

A
A

A

DBMS



Connection Pooling with DBMS Proxies

Matt Butrovich © November 202311

C
C

C

BB B

Clients

A
A

A

BB BC CC A A A

DBMS Proxy DBMS

http://www.pdl.cmu.edu/



User-Space DBMS Proxy

Matt Butrovich © November 202312

N
et

w
or

k
U

se
r-

sp
ac

e
Ke

rn
el

-s
pa

ce
TCP Stack

Socket Stack

send()/recv()

DBMS Client

DBMS Proxy

http://www.pdl.cmu.edu/

User-space DBMS Proxy

• Traffic goes through OS network
stack to apply DBMS protocol logic

• User-space applications of varying
complexity to express parallelism

• Coordination mechanisms around
send() and recv() system calls



User-Space DBMS Proxy

Matt Butrovich © November 202312

User-space DBMS proxy

N
et

w
or

k
U

se
r-

sp
ac

e
Ke

rn
el

-s
pa

ce

TCP Stack

Socket Stack

send()/recv()

DBMS Client

DBMS Proxy

http://www.pdl.cmu.edu/

• Traffic goes through OS network
stack to apply DBMS protocol logic

• User-space applications of varying
complexity to express parallelism

• Coordination mechanisms around
send() and recv() system calls



User-Space DBMS Proxy

Matt Butrovich © November 202312

User-space DBMS proxy

N
et

w
or

k
U

se
r-

sp
ac

e
Ke

rn
el

-s
pa

ce

TCP Stack

Socket Stack

send()/recv()

DBMS Client

DBMS Proxy

http://www.pdl.cmu.edu/

• Traffic goes through OS network
stack to apply DBMS protocol logic

• User-space applications of varying
complexity to express parallelism

• Coordination mechanisms around
send() and recv() system calls



User-Space DBMS Proxy

Matt Butrovich © November 202312

User-space DBMS proxy

N
et

w
or

k
U

se
r-

sp
ac

e
Ke

rn
el

-s
pa

ce

TCP Stack

Socket Stack

send()/recv()

DBMS Client

DBMS Proxy

http://www.pdl.cmu.edu/

• Traffic goes through OS network
stack to apply DBMS protocol logic

• User-space applications of varying
complexity to express parallelism

• Coordination mechanisms around
send() and recv() system calls



User-Space DBMS Proxy

Matt Butrovich © November 202312

User-space DBMS proxy

N
et

w
or

k
U

se
r-

sp
ac

e
Ke

rn
el

-s
pa

ce

TCP Stack

Socket Stack

send()/recv()

DBMS Client

DBMS Proxy

http://www.pdl.cmu.edu/

• Traffic goes through OS network
stack to apply DBMS protocol logic

• User-space applications of varying
complexity to express parallelism

• Coordination mechanisms around
send() and recv() system calls



Tigger DBMS Proxy

Matt Butrovich © November 202313

N
et

w
or

k
U

se
r-

sp
ac

e
Ke

rn
el

-s
pa

ce
TCP Stack

Socket Stack

send()/recv()

DBMS Client

PgBouncer

User-space DBMS Proxy

http://www.pdl.cmu.edu/

• Frequent operations use 
User-bypass:

• Transaction-aware pooling
• Workload replication

• User-space operations:
• Authentication
• Settings



Tigger DBMS Proxy

Matt Butrovich © November 202313

N
et

w
or

k
U

se
r-

sp
ac

e
Ke

rn
el

-s
pa

ce
TCP Stack

Socket Stack

send()/recv()

DBMS Client

Tigger

Tigger

User-Bypass DBMS Proxy

http://www.pdl.cmu.edu/

• Frequent operations use 
User-bypass:

• Transaction-aware pooling
• Workload replication

• User-space operations:
• Authentication
• Settings



Tigger DBMS Proxy

N
et

w
or

k
U

se
r-

sp
ac

e
Ke

rn
el

-s
pa

ce

TCP Stack

Socket Stack

send()/recv()

DBMS Client

Tigger

Tigger

Matt Butrovich © November 202313

User-Bypass DBMS Proxy

http://www.pdl.cmu.edu/

• Frequent operations use 
User-bypass:

• Transaction-aware pooling
• Workload replication

• User-space operations:
• Authentication
• Settings



Tigger DBMS Proxy

N
et

w
or

k
U

se
r-

sp
ac

e
Ke

rn
el

-s
pa

ce

TCP Stack

Socket Stack

send()/recv()

DBMS Client

Tigger

Tigger

Matt Butrovich © November 202313

User-Bypass DBMS Proxy

http://www.pdl.cmu.edu/

• Frequent operations use 
User-bypass:
• Transaction-aware pooling
• Workload replication

• User-space operations:
• Authentication
• Settings



Tigger DBMS Proxy

N
et

w
or

k
U

se
r-

sp
ac

e
Ke

rn
el

-s
pa

ce

TCP Stack

Socket Stack

send()/recv()

DBMS Client

Tigger

Tigger

Matt Butrovich © November 202313

User-Bypass DBMS Proxy

http://www.pdl.cmu.edu/

• Frequent operations use 
User-bypass:
• Transaction-aware pooling
• Workload replication

• User-space operations:
• Authentication
• Settings



Tigger Connection Pooling

Matt Butrovich © November 202314http://www.pdl.cmu.edu/



Tigger Connection Pooling

Matt Butrovich © November 202314

N
et
w
or
k

Ke
rn
el
-s
pa

ce

Client

1

http://www.pdl.cmu.edu/



Tigger Connection Pooling

Matt Butrovich © November 202314

N
et

w
or

k
Ke

rn
el

-s
pa

ce

Client

Client

eBPF Program

1

2
eBPF
Maps

http://www.pdl.cmu.edu/



Tigger Connection Pooling

Matt Butrovich © November 202314

N
et

w
or

k
Ke

rn
el

-s
pa

ce

DBMS Client

Client

eBPF Program

13

2
eBPF
Maps

http://www.pdl.cmu.edu/



Tigger Connection Pooling

Matt Butrovich © November 202314

N
et

w
or

k
Ke

rn
el

-s
pa

ce

DBMS Client

Client

eBPF Program

14 3

2
eBPF
Maps

http://www.pdl.cmu.edu/



Tigger Connection Pooling

Matt Butrovich © November 202314

N
et

w
or

k
Ke

rn
el

-s
pa

ce

DBMS Client

Server

eBPF Program

Client

eBPF Program

14 3

25

eBPF
Maps

http://www.pdl.cmu.edu/



Tigger Connection Pooling

Matt Butrovich © November 202314

N
et

w
or

k
Ke

rn
el

-s
pa

ce

DBMS Client

Server

eBPF Program

Client

eBPF Program

14 36

25

eBPF
Maps

http://www.pdl.cmu.edu/



Tigger Connection Pooling

Matt Butrovich © November 202314

N
et

w
or

k
Ke

rn
el

-s
pa

ce

DBMS Client

Server

eBPF Program

Client

eBPF Program

14 36

25

eBPF
Maps

7

http://www.pdl.cmu.edu/



Experimental Setup
• Proxies:

• PgBouncer
• Yandex Odyssey
• Tigger

• Dedicated AWS EC2 c6i instances, PostgreSQL 14.5, Ubuntu 
22.04 LTS

• BenchBase: YCSB

Matt Butrovich © November 202315http://www.pdl.cmu.edu/



Experimental Setup
• Proxies:

• PgBouncer
• Yandex Odyssey
• Tigger

• Dedicated AWS EC2 c6i instances, PostgreSQL 14.5, Ubuntu 
22.04 LTS

• BenchBase: YCSB

Matt Butrovich © November 202315http://www.pdl.cmu.edu/



Experimental Setup
• Proxies:

• PgBouncer
• Yandex Odyssey
• Tigger

• Dedicated AWS EC2 c6i instances, PostgreSQL 14.5, Ubuntu 
22.04 LTS

• BenchBase: YCSB

Matt Butrovich © November 202315http://www.pdl.cmu.edu/



Experimental Setup
• Proxies:

• PgBouncer
• Yandex Odyssey
• Tigger

• Dedicated AWS EC2 c6i instances, PostgreSQL 14.5, Ubuntu 
22.04 LTS

• BenchBase: YCSB

Matt Butrovich © November 202315http://www.pdl.cmu.edu/



Connection Pooling Throughput

Matt Butrovich © November 202316http://www.pdl.cmu.edu/



����� !����� �!����� 	!����� 
!�����

	�


�

��

�
�
��

��
��
� 
��
� 
�

��
��
��
�

���� ��
���� ���� �
��

����

�
��
	��� 		

	���	
�	
	
��


��
 	��� 
��


��

Connection Pooling Throughput

Matt Butrovich © November 202316

�����
��� ���

�� �	����

http://www.pdl.cmu.edu/



����� !����� �!����� 	!����� 
!�����

	�


�

��

�
�
��

��
��
� 
��
� 
�

��
��
��
�

���� ��
���� ���� �
��

����

�
��
	��� 		

	���	
�	
	
��


��
 	��� 
��


��

Connection Pooling Throughput

Matt Butrovich © November 202316

�����
��� ���

�� �	����

http://www.pdl.cmu.edu/



����� !����� �!����� 	!����� 
!�����

	�


�

��

�
�
��

��
��
� 
��
� 
�

��
��
��
�

���� ��
���� ���� �
��

����

�
��
	��� 		

	���	
�	
	
��


��
 	��� 
��


��

Connection Pooling Throughput

Matt Butrovich © November 202316

>40% more TPS under CPU constraint
�����
��� ���

�� �	����

http://www.pdl.cmu.edu/



����� !����� �!����� 	!����� 
!�����

	�


�

��

�
�
��

��
��
� 
��
� 
�

��
��
��
�

���� ��
���� ���� �
��

����

�
��
	��� 		

	���	
�	
	
��


��
 	��� 
��


��

Connection Pooling Throughput

Matt Butrovich © November 202316

8x cost for Odyssey to match Tigger’s performance

>40% more TPS under CPU constraint
�����
��� ���

�� �	����

http://www.pdl.cmu.edu/



Outline
• User-bypass

• Prior work: User-bypass for DBMS proxies

• Future work: User-bypass DBMS

Matt Butrovich © November 202317http://www.pdl.cmu.edu/



User-Bypass DBMS

Matt Butrovich © November 2023http://www.pdl.cmu.edu/ 18

Ke
rn
el
-s
pa

ce

BEGIN()

GET()
SET()

DELETE()
COMMIT()

eBPF
Program

BPF-DB



User-Bypass DBMS

Matt Butrovich © November 2023http://www.pdl.cmu.edu/ 18

Ke
rn
el
-s
pa

ce

BEGIN()

GET()
SET()

DELETE()
COMMIT()

eBPF
Program

BPF-DB



User-Bypass DBMS

Matt Butrovich © November 2023http://www.pdl.cmu.edu/ 18

Ke
rn
el
-s
pa

ce

BEGIN()

GET()
SET()

DELETE()
COMMIT()

eBPF
Program

BPF-DB

Ke
rn

el
-s

pa
ce

BEGIN()

GET()
SET()

DELETE()
COMMIT()

eBPF
Program

BPF-DB

Storage Management



User-Bypass DBMS

Matt Butrovich © November 2023http://www.pdl.cmu.edu/ 18

Ke
rn
el
-s
pa

ce

BEGIN()

GET()
SET()

DELETE()
COMMIT()

eBPF
Program

BPF-DB

Ke
rn

el
-s

pa
ce

BEGIN()

GET()
SET()

DELETE()
COMMIT()

eBPF
Program

BPF-DB

Storage Management

Ke
rn

el
-s

pa
ce

BEGIN()

GET()
SET()

DELETE()
COMMIT()

eBPF
Program

BPF-DB

Transaction Management

Storage Management



User-Bypass DBMS

Matt Butrovich © November 2023http://www.pdl.cmu.edu/ 18

Ke
rn
el
-s
pa

ce

BEGIN()

GET()
SET()

DELETE()
COMMIT()

eBPF
Program

BPF-DB

Ke
rn

el
-s

pa
ce

BEGIN()

GET()
SET()

DELETE()
COMMIT()

eBPF
Program

BPF-DB

Storage Management

Ke
rn

el
-s

pa
ce

BEGIN()

GET()
SET()

DELETE()
COMMIT()

eBPF
Program

BPF-DB

Transaction Management

Storage Management

Ke
rn

el
-s

pa
ce

BEGIN()

GET()
SET()

DELETE()
COMMIT()

eBPF
Program

BPF-DB

Logging and Checkpointing

Transaction Management

Storage Management



Storage Management
• Goal: Store database contents in kernel-resident 

data structures

• Challenges:
• No malloc
• eBPF maps use fixed size keys and values
• Version chains cannot be unbounded

Matt Butrovich © November 2023http://www.pdl.cmu.edu/ 19



Storage Management
• Goal: Store database contents in kernel-resident 

data structures

• Challenges:
• No malloc
• eBPF maps use fixed size keys and values
• Version chains cannot be unbounded

Matt Butrovich © November 2023http://www.pdl.cmu.edu/ 19



Storage Management
• Goal: Store database contents in kernel-resident 

data structures

• Challenges:
• No malloc
• eBPF maps use fixed size keys and values
• Version chains cannot be unbounded

Matt Butrovich © November 2023http://www.pdl.cmu.edu/ 19



Storage Management
• Goal: Store database contents in kernel-resident 

data structures

• Challenges:
• No malloc
• eBPF maps use fixed size keys and values
• Version chains cannot be unbounded

Matt Butrovich © November 2023http://www.pdl.cmu.edu/ 19



Storage Management
• Goal: Store database contents in kernel-resident 

data structures

• Challenges:
• No malloc
• eBPF maps use fixed size keys and values
• Version chains cannot be unbounded

Matt Butrovich © November 2023http://www.pdl.cmu.edu/ 19



Storage Management
• Goal: Store database contents in kernel-resident 

data structures

• Challenges:
• No malloc
• eBPF maps use fixed size keys and values
• Version chains cannot be unbounded

Matt Butrovich © November 2023http://www.pdl.cmu.edu/ 19



Transaction Management
• Goal: Multi-statement transactions that ensure 

ACID properties

• Challenges:
• Restrictive atomic primitives
• Boundedness limits spinning
• eBPF execution cannot yield

Matt Butrovich © November 2023http://www.pdl.cmu.edu/ 20



Transaction Management
• Goal: Multi-statement transactions that ensure 

ACID properties

• Challenges:
• Restrictive atomic primitives
• Boundedness limits spinning
• eBPF execution cannot yield

Matt Butrovich © November 2023http://www.pdl.cmu.edu/ 20



Transaction Management
• Goal: Multi-statement transactions that ensure 

ACID properties

• Challenges:
• Restrictive atomic primitives
• Boundedness limits spinning
• eBPF execution cannot yield

Matt Butrovich © November 2023http://www.pdl.cmu.edu/ 20



Transaction Management
• Goal: Multi-statement transactions that ensure 

ACID properties

• Challenges:
• Restrictive atomic primitives
• Boundedness limits spinning
• eBPF execution cannot yield

Matt Butrovich © November 2023http://www.pdl.cmu.edu/ 20



Transaction Management
• Goal: Multi-statement transactions that ensure 

ACID properties

• Challenges:
• Restrictive atomic primitives
• Boundedness limits spinning
• eBPF execution cannot yield

Matt Butrovich © November 2023http://www.pdl.cmu.edu/ 20



Transaction Management
• Goal: Multi-statement transactions that ensure 

ACID properties

• Challenges:
• Restrictive atomic primitives
• Boundedness limits spinning
• eBPF execution cannot yield

Matt Butrovich © November 2023http://www.pdl.cmu.edu/ 20



Logging and Checkpointing
• Goal: Persist database contents to disk both 

through write-ahead logging and checkpointing

• Challenges:
• eBPF programs cannot initiate disk access
• eBPF program execution cannot yield
• Database contents are stored in kernel-resident data

Matt Butrovich © November 202321http://www.pdl.cmu.edu/



Logging and Checkpointing
• Goal: Persist database contents to disk both 

through write-ahead logging and checkpointing

• Challenges:
• eBPF programs cannot initiate disk access
• eBPF program execution cannot yield
• Database contents are stored in kernel-resident data

Matt Butrovich © November 202321http://www.pdl.cmu.edu/



Logging and Checkpointing
• Goal: Persist database contents to disk both 

through write-ahead logging and checkpointing

• Challenges:
• eBPF programs cannot initiate disk access
• eBPF program execution cannot yield
• Database contents are stored in kernel-resident data

Matt Butrovich © November 202321http://www.pdl.cmu.edu/



Logging and Checkpointing
• Goal: Persist database contents to disk both 

through write-ahead logging and checkpointing

• Challenges:
• eBPF programs cannot initiate disk access
• eBPF program execution cannot yield
• Database contents are stored in kernel-resident data

Matt Butrovich © November 202321http://www.pdl.cmu.edu/



Logging and Checkpointing
• Goal: Persist database contents to disk both 

through write-ahead logging and checkpointing

• Challenges:
• eBPF programs cannot initiate disk access
• eBPF program execution cannot yield
• Database contents are stored in kernel-resident data

Matt Butrovich © November 202321http://www.pdl.cmu.edu/



Logging and Checkpointing
• Goal: Persist database contents to disk both 

through write-ahead logging and checkpointing

• Challenges:
• eBPF programs cannot initiate disk access
• eBPF program execution cannot yield
• Database contents are stored in kernel-resident data

Matt Butrovich © November 202321http://www.pdl.cmu.edu/



Experimental Setup
• v0.1 user-bypass DBMS (BPF-DB):

• In-memory storage manager, variable value sizes
• No multi-statement transactions
• Atomic GET/SET/DELETE via spinlocks, ordering, and RCU “MVCC”

• In-memory databases:
• Redis (C, single-threaded)
• KeyDB (C, multi-threaded)
• Dragonfly (C++, multi-threaded)
• BPF-DB (eBPF, multi-threaded)

• 2×20-core Intel Xeon Gold 5218R CPUs, 196 GB DRAM, 
memtier_benchmark, Ubuntu 22.04 LTS

Matt Butrovich © November 2023http://www.pdl.cmu.edu/ 22



Experimental Setup
• v0.1 user-bypass DBMS (BPF-DB):

• In-memory storage manager, variable value sizes
• No multi-statement transactions
• Atomic GET/SET/DELETE via spinlocks, ordering, and RCU “MVCC”

• In-memory databases:
• Redis (C, single-threaded)
• KeyDB (C, multi-threaded)
• Dragonfly (C++, multi-threaded)
• BPF-DB (eBPF, multi-threaded)

• 2×20-core Intel Xeon Gold 5218R CPUs, 196 GB DRAM, 
memtier_benchmark, Ubuntu 22.04 LTS

Matt Butrovich © November 2023http://www.pdl.cmu.edu/ 22



Experimental Setup
• v0.1 user-bypass DBMS (BPF-DB):

• In-memory storage manager, variable value sizes
• No multi-statement transactions
• Atomic GET/SET/DELETE via spinlocks, ordering, and RCU “MVCC”

• In-memory databases:
• Redis (C, single-threaded)
• KeyDB (C, multi-threaded)
• Dragonfly (C++, multi-threaded)
• BPF-DB (eBPF, multi-threaded)

• 2×20-core Intel Xeon Gold 5218R CPUs, 196 GB DRAM, 
memtier_benchmark, Ubuntu 22.04 LTS

Matt Butrovich © November 2023http://www.pdl.cmu.edu/ 22



Experimental Setup
• v0.1 user-bypass DBMS (BPF-DB):

• In-memory storage manager, variable value sizes
• No multi-statement transactions
• Atomic GET/SET/DELETE via spinlocks, ordering, and RCU “MVCC”

• In-memory databases:
• Redis (C, single-threaded)
• KeyDB (C, multi-threaded)
• Dragonfly (C++, multi-threaded)
• BPF-DB (eBPF, multi-threaded)

• 2×20-core Intel Xeon Gold 5218R CPUs, 196 GB DRAM, 
memtier_benchmark, Ubuntu 22.04 LTS

Matt Butrovich © November 2023http://www.pdl.cmu.edu/ 22



Preliminary In-Memory Results

Matt Butrovich © November 202323http://www.pdl.cmu.edu/



�� ����
���$��"�%�����

�

����

����

	���

��
�
��
��

���
��

��
��

��
!�
$�
� 

$#
���

��
��

�

�
� ��

��� 

�

�




���


	
	�

�
�


Preliminary In-Memory Results

Matt Butrovich © November 202323http://www.pdl.cmu.edu/

�
	
� �
��� ��������� ������



�� ����
���$��"�%�����

�

����

����

	���

��
�
��
��

���
��

��
��

��
!�
$�
� 

$#
���

��
��

�

�
� ��

��� 

�

�




���


	
	�

�
�


Preliminary In-Memory Results

Matt Butrovich © November 202323http://www.pdl.cmu.edu/

�
	
� �
��� ��������� ������



Conclusion
• User-bypass is an approach for designing systems that 

reduces execution overhead and data movement 
associated with OS system calls

• User-bypass is already feasible for multiple applications 
including DBMS proxies

• Our proposed user-bypass DBMS will benefit from 
storing database contents in kernel-resident data 
structures and enable new classes of eBPF applications

Matt Butrovich © November 202324http://www.pdl.cmu.edu/



Conclusion
• User-bypass is an approach for designing systems that 

reduces execution overhead and data movement 
associated with OS system calls

• User-bypass is already feasible for multiple applications 
including DBMS proxies

• Our proposed user-bypass DBMS will benefit from 
storing database contents in kernel-resident data 
structures and enable new classes of eBPF applications

Matt Butrovich © November 202324http://www.pdl.cmu.edu/



Conclusion
• User-bypass is an approach for designing systems that 

reduces execution overhead and data movement 
associated with OS system calls

• User-bypass is already feasible for multiple applications 
including DBMS proxies

• Our proposed user-bypass DBMS will benefit from 
storing database contents in kernel-resident data 
structures and enable new classes of eBPF applications

Matt Butrovich © November 202324http://www.pdl.cmu.edu/



Conclusion
• User-bypass is an approach for designing systems that 

reduces execution overhead and data movement 
associated with OS system calls

• User-bypass is already feasible for multiple applications 
including DBMS proxies

• Our proposed user-bypass DBMS will benefit from 
storing database contents in kernel-resident data 
structures and enable new classes of eBPF applications

Matt Butrovich © November 202324http://www.pdl.cmu.edu/


